3.123 \(\int \frac{\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=107 \[ -\frac{(A+2 C) \tan (c+d x)}{a d}+\frac{(2 A+3 C) \tanh ^{-1}(\sin (c+d x))}{2 a d}-\frac{(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}+\frac{(2 A+3 C) \tan (c+d x) \sec (c+d x)}{2 a d} \]

[Out]

((2*A + 3*C)*ArcTanh[Sin[c + d*x]])/(2*a*d) - ((A + 2*C)*Tan[c + d*x])/(a*d) + ((2*A + 3*C)*Sec[c + d*x]*Tan[c
 + d*x])/(2*a*d) - ((A + C)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(a + a*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.166728, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4085, 3787, 3767, 8, 3768, 3770} \[ -\frac{(A+2 C) \tan (c+d x)}{a d}+\frac{(2 A+3 C) \tanh ^{-1}(\sin (c+d x))}{2 a d}-\frac{(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}+\frac{(2 A+3 C) \tan (c+d x) \sec (c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]

[Out]

((2*A + 3*C)*ArcTanh[Sin[c + d*x]])/(2*a*d) - ((A + 2*C)*Tan[c + d*x])/(a*d) + ((2*A + 3*C)*Sec[c + d*x]*Tan[c
 + d*x])/(2*a*d) - ((A + C)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(a + a*Sec[c + d*x]))

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx &=-\frac{(A+C) \sec ^2(c+d x) \tan (c+d x)}{d (a+a \sec (c+d x))}-\frac{\int \sec ^2(c+d x) (a (A+2 C)-a (2 A+3 C) \sec (c+d x)) \, dx}{a^2}\\ &=-\frac{(A+C) \sec ^2(c+d x) \tan (c+d x)}{d (a+a \sec (c+d x))}-\frac{(A+2 C) \int \sec ^2(c+d x) \, dx}{a}+\frac{(2 A+3 C) \int \sec ^3(c+d x) \, dx}{a}\\ &=\frac{(2 A+3 C) \sec (c+d x) \tan (c+d x)}{2 a d}-\frac{(A+C) \sec ^2(c+d x) \tan (c+d x)}{d (a+a \sec (c+d x))}+\frac{(2 A+3 C) \int \sec (c+d x) \, dx}{2 a}+\frac{(A+2 C) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{a d}\\ &=\frac{(2 A+3 C) \tanh ^{-1}(\sin (c+d x))}{2 a d}-\frac{(A+2 C) \tan (c+d x)}{a d}+\frac{(2 A+3 C) \sec (c+d x) \tan (c+d x)}{2 a d}-\frac{(A+C) \sec ^2(c+d x) \tan (c+d x)}{d (a+a \sec (c+d x))}\\ \end{align*}

Mathematica [B]  time = 3.01149, size = 316, normalized size = 2.95 \[ \frac{\cos \left (\frac{1}{2} (c+d x)\right ) \cos (c+d x) \left (A+C \sec ^2(c+d x)\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right ) \left (-2 (2 A+3 C) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+4 A \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )-\frac{4 C \sin (d x)}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{C}{\left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^2}-\frac{C}{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2}+6 C \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )-4 (A+C) \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )\right )}{a d (\sec (c+d x)+1) (A \cos (2 (c+d x))+A+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]*Cos[c + d*x]*(A + C*Sec[c + d*x]^2)*(-4*(A + C)*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*(-2
*(2*A + 3*C)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 4*A*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + 6*C*Log
[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + C/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 - C/(Cos[(c + d*x)/2] + Sin[
(c + d*x)/2])^2 - (4*C*Sin[d*x])/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x
)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/(a*d*(A + 2*C + A*Cos[2*(c + d*x)])*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.059, size = 209, normalized size = 2. \begin{align*} -{\frac{A}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{C}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{C}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{3\,C}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{3\,C}{2\,ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{A}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{C}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{3\,C}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{3\,C}{2\,ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{A}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x)

[Out]

-1/a/d*A*tan(1/2*d*x+1/2*c)-1/a/d*C*tan(1/2*d*x+1/2*c)-1/2/a/d/(tan(1/2*d*x+1/2*c)+1)^2*C+3/2/a/d/(tan(1/2*d*x
+1/2*c)+1)*C+3/2/a/d*ln(tan(1/2*d*x+1/2*c)+1)*C+1/a/d*ln(tan(1/2*d*x+1/2*c)+1)*A+1/2/a/d/(tan(1/2*d*x+1/2*c)-1
)^2*C+3/2/a/d/(tan(1/2*d*x+1/2*c)-1)*C-3/2/a/d*ln(tan(1/2*d*x+1/2*c)-1)*C-1/a/d*ln(tan(1/2*d*x+1/2*c)-1)*A

________________________________________________________________________________________

Maxima [B]  time = 0.94444, size = 323, normalized size = 3.02 \begin{align*} -\frac{C{\left (\frac{2 \,{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a - \frac{2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} - \frac{3 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} + \frac{3 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} + \frac{2 \, \sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - 2 \, A{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(C*(2*(sin(d*x + c)/(cos(d*x + c) + 1) - 3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a - 2*a*sin(d*x + c)^2/(
cos(d*x + c) + 1)^2 + a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) - 3*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a +
3*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a + 2*sin(d*x + c)/(a*(cos(d*x + c) + 1))) - 2*A*(log(sin(d*x + c)/
(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(d*x + c) + 1))))
/d

________________________________________________________________________________________

Fricas [A]  time = 0.503715, size = 377, normalized size = 3.52 \begin{align*} \frac{{\left ({\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} +{\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left ({\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} +{\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (2 \,{\left (A + 2 \, C\right )} \cos \left (d x + c\right )^{2} + C \cos \left (d x + c\right ) - C\right )} \sin \left (d x + c\right )}{4 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(((2*A + 3*C)*cos(d*x + c)^3 + (2*A + 3*C)*cos(d*x + c)^2)*log(sin(d*x + c) + 1) - ((2*A + 3*C)*cos(d*x +
c)^3 + (2*A + 3*C)*cos(d*x + c)^2)*log(-sin(d*x + c) + 1) - 2*(2*(A + 2*C)*cos(d*x + c)^2 + C*cos(d*x + c) - C
)*sin(d*x + c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sec ^{2}{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx + \int \frac{C \sec ^{4}{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*sec(c + d*x)**2/(sec(c + d*x) + 1), x) + Integral(C*sec(c + d*x)**4/(sec(c + d*x) + 1), x))/a

________________________________________________________________________________________

Giac [A]  time = 1.22082, size = 176, normalized size = 1.64 \begin{align*} \frac{\frac{{\left (2 \, A + 3 \, C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{{\left (2 \, A + 3 \, C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{2 \,{\left (A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{a} + \frac{2 \,{\left (3 \, C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2} a}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*((2*A + 3*C)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - (2*A + 3*C)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - 2*(
A*tan(1/2*d*x + 1/2*c) + C*tan(1/2*d*x + 1/2*c))/a + 2*(3*C*tan(1/2*d*x + 1/2*c)^3 - C*tan(1/2*d*x + 1/2*c))/(
(tan(1/2*d*x + 1/2*c)^2 - 1)^2*a))/d